一、贮液罐
溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:
(1)必须有足够的容积,以保证重复分析时有足够的供液;
(2)脱气方便;
(3)能承受一定的压力;
(4)所选用的材质对所使用的溶剂一律惰性。
由于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0、5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。
脱气方法有多种,在离子色谱中应用比较多的有如下方法:
(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。
(2)吹氦气或氮气脱气法:氦气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。
(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左右,可以达到脱气目的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可自动对淋洗液进行在线自动脱气。
二、高压输液泵
高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:
(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。
(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。
(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱,泵应采用全塑Peek材料制作。
(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。
(5)流量在一定范围任选,并能达到一定精度要求。
(6)部分输液泵具有梯度淋洗功能。
目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。
由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。
一般来说,双柱塞流量更平稳,脉动小,但构造复杂,价格也比较高。
高效液相色谱采用不锈钢或钛合金材料,与高效液相色谱相比,离子色谱的泵体则采用全塑系统,从而对酸、碱、盐有抗污染的性能,并保证了对金属离子测定的准确性。
1、单柱塞泵
单柱塞泵的压力和流量波动大。采取一些必要的措施如增加阻尼器,对凸轮形状作特别设计以及利用先进的电子技术也可获得满意的结果。早期的离子色谱和一些简易型离子色谱仪常采用单柱塞泵系统。
2、双柱塞泵
双柱塞泵即两个泵头并联使用,凸轮相差180°,使压力和流量波动减少。因此这种双柱塞泵可以不加阻尼器直接进入分离系统,可以进行低压梯度淋洗。如今大多数高档离子色谱仪均已经采用双柱塞泵。
目前,较新型的微孔型离子色谱仪,由于其采用的色谱柱为2mm内径,为常规的4mm内径的色谱柱横截面的1/4,因此在线速度不变的条件下,其流速为常规色谱的1/4,因此它采用的泵的流速为0、01~2、50 ml/min。
其主要特点是柱塞比较小,但结构与常规的离子色谱仪相似。由于流速的减小,可以大大减少溶剂的用量。如以同样的量进样,灵敏度可以增大到原来的4倍。
三、梯度淋洗装置
梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。
采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。
另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。
离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:
1、低压梯度
是一种目前离子色谱较为广泛采用的低压梯度装置,可进行四元梯度,它通过电磁比例阀的开关频率,由控制器控制,再改变控制器程序,即可得一任意混合浓度。
2、高压梯度
它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。
梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。
离子色谱仪在投入运行的几年中,仪器运行良好,但也出现了一些问题,如系统压力升高、压力降低或无压力、色谱峰的保留时间延长或缩短等。为了确保仪器的正常运行,应进行仔细排查,确定故障原因,及时排除故障使得仪器能够正常运行。
1、电导检测器常见故障
电导检测器常见故障是检测池被污染。
故障原因:污染物主要来源于没有经过适当前处理的样品,如浓度过高、复杂的样品基体等。
故障现象:基线噪声变大,灵敏度降低。
处理方法: (1)用3 mol/LHNO3溶液清洗电导池,再用去离子水清洗电导池至pH值达中性; (2)用0. 001 mol/L KCI溶液校正电导池,使电导值显示为147μS。
2、分析泵常见故障
分析泵常见故障是泵内产生气泡和漏液
故障现象:基线的噪声加大,色谱峰形变差(出现乱峰)。
处理方法:为分析泵提供充足的淋洗液,并且给淋洗液施加一定的压力(通常小于35 kPa)。对于容易产生气体的溶液可以先用真空脱气,然后用惰性气体在线脱气的处理方法;若泵漏液,可更换泵密封圈。
3、抑制器使用中的常见故障与排除
抑制器在离子色谱仪中具有举足轻重的作用。抑制器工作性能的好坏对分析结果有很大的影响。抑制器常见的故障是漏液,使峰面积减小(灵敏度下降)和背景电导升高。
(1)峰面积减小
造成峰面积减小的主要原因有:微膜脱水、抑制器漏液、溶液流路不畅和微膜被玷污。抑制器长期不用,会发生微膜脱水现象,为激活抑制器,可用注射器向阴离子抑制器内以淋洗液流路相反的方向注入少许0.2mol/L的硫酸溶液。同时向再生液进口注入少许纯净水,并将抑制器放置半小时以上。抑制器内玷污的金属离子可以用草酸钠清洗。
(2)背景电导值高
在化学抑制型电导检测分析过程中,若背景电导高,说明抑制器部分存在一定的问题。大多数是操作不当引起的。例如淋洗液或再生液流路堵塞,系统中无溶液流动造成背景电导偏高或使用的电抑制器电流设置的太小等。膜被污染后交换容量下降亦会使背景电导升高。而失效的抑制器在使用时会出现背景电导持续升高的现象,此时应更换一支新的抑制器。
(3)漏液
抑制器漏液的主要原因是抑制器内的微膜没有充分水化。
因此,长时间未使用的抑制器在使用前应让微膜水溶胀后再使用。另外要保证再生液出口顺畅,因此反压较大时也会造成抑制器漏液。另外抑制器保管不当造成抑制器内的微膜收缩、破裂也会发生漏液现象。
下一篇:恒温水浴的操作使用及注意事项