

中华人民共和国国家环境保护标准

HJ 1067-2019

水质 苯系物的测定 顶空/气相色谱法

Water quality—Determination of benzene and its analogies

—Headspace / gas chromatography

(发布稿)

本电子版为发布稿。请以中国环境出版集团出版的正式标准文本为准。

2019-12-24 发布

2020-03-24 实施

生 态 环 境 部 发布

目 次

前言	ii
1 适用范围	1
2 规范性引用文件	1
3 方法原理	1
4 试剂和材料	1
5 仪器和设备	2
6 样品	2
7 分析步骤	3
8 结果计算与表示	4
9 精密度和准确度	5
10 质量保证和质量控制	5
11 废物处理	6
12 注意事项	6
附录 A (规范性附录) 目标化合物的检出限和测定下限	7
附录 B (资料性附录)辅助定性参考色谱图	8
附录 C (资料性附录) 方法的精密度和准确度	9

前 言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护生态 环境,保障人体健康,规范水中苯系物的测定方法,制定本标准。

本标准规定了测定地表水、地下水、生活污水和工业废水中苯系物的顶空/气相色谱法。 本标准与《水质 苯系物的测定 气相色谱法》(GB/T 11890-1989)相比,主要差异如下:

- ——名称修改为《水质 苯系物的测定 顶空/气相色谱法》;
- ——适用范围中增加了地下水和生活污水;
- ——删除了液液萃取相关内容;
- ——增加了规范性引用文件;
- ——增加了方法原理的描述;
- ——将分析用填充柱改为毛细管柱,采用全自动顶空进样器进样代替手动顶空进样;
- ——改单点校准为工作曲线校准;
- ——增加了质量保证和质量控制章节:
- ——增加了废物处理和注意事项章节。

自本标准实施之日起,原国家环境保护局 1989 年 12 月 25 日批准发布的《水质 苯系物的测定 气相色谱法》(GB/T 11890-1989)在相应的环境质量标准和污染物排放(控制)标准实施中停止执行。

本标准的附录A为规范性附录,附录B和附录C为资料性附录。

本标准由生态环境部生态环境监测司、法规与标准司组织制订。

本标准起草单位:中国船舶重工集团公司第七一八研究所。

本标准验证单位:河北省环境监测中心站、石家庄市环境监测站、安阳市环境监测站、 保定市环境监测站、中国船舶工业化学物质检测中心和北京华测北方检测技术有限公司。

本标准生态环境部2019年12月24日批准。

本标准自2020年3月24日起实施。

本标准由生态环境部解释。

水质 苯系物的测定 顶空/气相色谱法

警告:实验中使用的溶剂和标准样品为有毒有害化合物,其溶液配制及样品前处理过程 应在通风柜中进行,操作时应按规定要求佩戴防护器具,避免接触皮肤和衣物。

1 适用范围

本标准规定了测定水中苯系物的顶空/气相色谱法。

本标准适用于地表水、地下水、生活污水和工业废水中苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、异丙苯和苯乙烯等 8 种苯系物的测定。

当取样体积为 10.0 ml 时,本标准测定水中苯系物的方法检出限为 $2~\mu$ g/L $\sim 3~\mu$ g/L,测定下限为 $8~\mu$ g/L $\sim 12~\mu$ g/L。详见附录 A。

2 规范性引用文件

本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

HJ 494 水质 采样技术指导

HJ 91.1 污水监测技术规范

HJ/T 91 地表水和污水监测技术规范

HJ/T 164 地下水环境监测技术规范

3 方法原理

将样品置于密闭的顶空瓶中,在一定的温度和压力下,顶空瓶内样品中挥发性组分向液上空间挥发,产生蒸气压,在气液两相达到热力学动态平衡,在一定的浓度范围内,苯系物在气相中的浓度与水相中的浓度成正比。定量抽取气相部分用气相色谱分离,氢火焰离子化检测器检测。根据保留时间定性,工作曲线外标法定量。

4 试剂和材料

除非另有说明,分析时均使用符合国家标准的分析纯化学试剂。实验用水为二次蒸馏水或纯水设备制备的水,使用前需经过空白检验,确认不含目标化合物,且在目标化合物的保留时间区间内没有干扰色谱峰出现。

- 4.1 甲醇 (CH₃OH): 色谱纯。
- 4. 2 盐酸: ρ (HCl) =1.19 g/ml, 优级纯。
- 4.3 氯化钠 (NaCl): 优级纯。使用前在 500℃~550℃灼烧 2 h, 冷却至室温,于干燥器中保存备用。
- 4.4 抗坏血酸(C₆H₈O₆)。

- 4.5 盐酸溶液: 1+1。
- 4.6 标准贮备液: $\rho \approx 1.00 \text{ mg/ml}$, 溶剂为甲醇。

市售有证标准溶液,于4℃以下避光密封冷藏,或按照产品说明书保存。使用前应恢复至室温,混匀。

4.7 标准使用液: $\rho \approx 100 \, \mu \text{g/ml}$ 。

准确移取 1.00 ml 标准贮备液 (4.6), 用水定容至 10 ml。临用现配。

- 4.8 载气: 高纯氮气, 纯度≥99.999%。
- 4.9 燃烧气:高纯氢气,纯度≥99.999%。
- 4.10 助燃气:空气,经硅胶脱水、活性炭脱有机物。

5 仪器和设备

- 5.1 采样瓶: 40 ml 棕色螺口玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。
- 5.2 气相色谱仪: 具分流/不分流进样口和氢火焰离子化检测器 (FID)。
- 5.3 色谱柱 I: 规格为 30 m (柱长) \times 0.32 mm (内径) \times 0.5 μ m (膜厚), 100%聚乙二醇 固定相毛细管柱, 或其他等效毛细管柱。
- 5. 4 色谱柱 II: 规格为 30 m (柱长) $\times 0.25 \text{ mm}$ (内径) $\times 1.4 \text{ } \mu\text{m}$ (膜厚), 6%腈丙苯基+94% 二甲基聚硅氧烷固定相毛细管柱,或其他等效毛细管柱。
- 5.5 自动顶空进样器:温度控制精度为±1℃。
- 5.6 顶空瓶:顶空瓶(22 ml)、聚四氟乙烯(PTFE)/硅氧烷密封垫、瓶盖(螺旋盖或一次使用的压盖),也可使用与自动顶空进样器(5.5)配套的玻璃顶空瓶。
- 5.7 移液管: 1 ml~10 ml。
- 5.8 玻璃微量注射器: 10 μl~100 μl。
- 5.9 一般实验室常用仪器和设备。

6 样品

6.1 样品采集

按照 HJ/T 91、HJ 91.1, HJ/T 164 和 HJ 494 的相关规定进行样品的采集。

采样前,测定样品的 pH 值,根据 pH 值测定结果,在采样瓶(5.1)中加入适量盐酸溶液(4.5),并加入 25 mg 抗坏血酸(4.4),使采样后样品的 pH≤2。若样品加入盐酸溶液后有气泡产生,须重新采样,重新采集的样品不加盐酸溶液保存,样品标签上须注明未酸化。采集样品时,应使样品在样品瓶中溢流且不留液上空间。取样时应尽量避免或减少样品在空气中暴露。所有样品均采集平行双样。

注:样品瓶应在采样前用甲醇(4.1)清洗晾干,采样时不需用样品进行荡洗。

6.2 全程序空白样品的采集

将实验用水带到采样现场,按与样品采集相同的步骤(6.1)采集全程序空白样品。

6.3 样品保存

样品采集后,应在 4℃以下冷藏运输和保存,14d 内完成分析。样品存放区域应无挥发性有机物干扰,样品测定前应将样品恢复至室温。

注:未酸化的样品应在24 h内完成分析。

6.4 试样的制备

向顶空瓶 (5.6) 中预先加入 3g 氯化钠 (4.3), 加入 10.0 ml 样品 (6.3), 立即加盖密封,摇匀,待测。

6.5 实验室空白试样的制备

用实验用水代替样品,按照与试样的制备(6.4)相同的步骤进行实验室空白试样的制备。

7 分析步骤

7.1 仪器参考条件

7.1.1 顶空进样器参考条件

加热平衡温度: 60 °C; 加热平衡时间: 30 min; 进样阀温度: 100 °C; 传输线温度: 100 °C; 进样体积: 1.0 ml(定量环)。

7.1.2 气相色谱仪参考条件

进样口温度: 200℃; 检测器温度: 250℃; 色谱柱升温程序: 40℃ (保持 5min), 以 5℃/min 速率升温到 80℃ (保持 5 min); 载气流速: 2.0 ml/min; 燃烧气流速: 30 ml/min; 助燃气流速: 30 ml/min; 尾吹气流速: 25 ml/min; 分流比为 10:1。

7.2 工作曲线的建立

分别向7个顶空瓶(5.6)中预先加入3 g氯化钠(4.3),依次准确加入10.0 ml、10.0 ml、10.0 ml、9.8 ml、9.6 ml、9.2 ml和8.8 ml水,然后,再用微量注射器和移液管依次加入5.00 μl、20.0 μl、50.0 μl、0.20 ml、0.40 ml、0.80 ml和1.2 ml标准使用液(4.7),配制成目标化合物质量浓度分别为0.050 mg/L、0.200 mg/L、0.500 mg/L、2.00 mg/L、4.00 mg/L、8.00 mg/L、12.0 mg/L的标准系列(此为参考浓度,可选取能够覆盖样品浓度范围的至少5个非零浓度点),立即密闭顶空瓶,轻振摇匀,按照仪器参考条件(7.1),从低浓度到高浓度依次进样分析,记录标准系列目标物的保留时间和响应值。以目标化合物浓度为横坐标,以其对应的响应值为纵坐标,建立工作曲线。

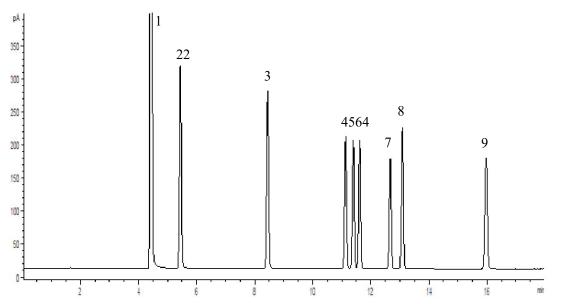
7.3 试样测定

按照与工作曲线的建立(7.2)相同的条件进行试样(6.4)的测定。

注: 若样品浓度超过工作曲线的最高浓度点, 需从未开封的样品瓶中重新取样, 稀释后重新进行试样

7.4 实验室空白试验

按照与试样测定(7.3)相同的步骤进行实验室空白试样(6.5)的测定。


8 结果计算与表示

8.1 定性分析

根据样品中目标物与标准系列中目标物的保留时间进行定性。样品分析前,建立保留时间窗 $t\pm3S$ 。t 为校准时各浓度级别目标化合物的保留时间均值,S 为初次校准时各浓度级别目标化合物保留时间的标准偏差。样品分析时,目标物应在保留时间窗内出峰。

当在色谱柱 I(5.3)上有检出,但不能确认时,可用色谱柱 II(5.4)做辅助定性。色谱柱 II的测定参考条件同仪器参考条件(7.1),苯系物标准色谱图参见附录 B。

在本标准规定的测定条件下, 苯系物的标准参考色谱图见图1。

1—甲醇; 2—苯; 3—甲苯; 4—乙苯; 5—对二甲苯; 6—间二甲苯; 7—异丙苯; 8—邻二甲苯; 9—苯乙烯。

图 1 苯系物在色谱柱 I 上的标准色谱图(6000 µg/L)

8.2 结果计算

样品中目标化合物的质量浓度 (μg/L), 按照公式 (1) 进行计算:

$$\rho_I = \rho_i \times D \tag{1}$$

式中: ρ_I ——样品中目标化合物的质量浓度, $\mu g/L$;

 ρ_i ——从工作曲线上得到的目标化合物质量浓度, μ g/L;

D——样品的稀释倍数。

8.3 结果表示

测定结果小数点后位数的保留与方法检出限一致,最多保留 3 位有效数字。

9 精密度和准确度

9.1 精密度

6 家实验室对浓度水平为 20 μg/L 和 100 μg/L 的苯系物统一混合标准样品进行了 6 次重复测定:实验室内相对标准偏差分别为 1.6%~15%和 2.1%~9.5%;实验室间相对标准偏差分别为 8.2%~12%和 2.7%~5.6%;重复性限 r 分别为 4 μg/L~4 μg/L 和 12 μg/L~19 μg/L;再现性限 R 分别为 6 μg/L~8μg/L 和 14μg/L~23μg/L。

1 家实验室对浓度水平为 50 μg/L、2000 μg/L 和 10000 μg/L 的苯系物混合标准样品进行 了 6 次重复测定:实验室内相对标准偏差分别为: 5.6%~9.2%、2.9%~7.8%和 1.9%~2.6%。

9.2 准确度

6 家实验室对加标浓度为 100 μg/L 的地表水样品进行了 6 次重复加标分析测定: 平均加标回收率范围为 85.9%~122%; 加标回收率最终值范围为 102%±13.0%~106%±11.0%。

1 家实验室对加标浓度为 500 μg/L 的地下水样品进行了 6 次重复加标分析测定: 平均加标回收率范围为 78.4%~91.6%; 加标回收率最终值范围为 84.6%±7.8%~88.4%±6.0%。

1 家实验室对加标浓度为 1000 μg/L 的生活污水样品进行了 6 次重复加标分析测定: 平均加标回收率范围为 76.1%~92.6%; 加标回收率最终值范围为 80.1%±7.9%~87.6%±5.7%。

1 家实验室对含乙苯浓度为 9.5 μg/L、对二甲苯浓度为 5.3 μg/L、间二甲苯浓度为 11.6 μg/L、邻二甲苯浓度为 19.4 μg/L、苯乙烯浓度为 19.4 μg/L 的工业废水样品进行了 6 次 重复加标分析测定,加标浓度为 6000 μg/L: 平均加标回收率范围为 84.5%~103%; 加标回收率最终值范围为 87.0%±5.9%~96.7%±8.8%。

精密度和准确度结果详见附录C中的表C.1~表C.4。

10 质量保证和质量控制

10.1 空白试验

每20个样品或每批次样品(<20个/批)应至少做一个全程序空白和一个实验室空白,测定结果中目标物浓度应低于方法检出限。

10.2 校准

分析样品前应建立能够覆盖样品浓度范围的至少5个浓度点的工作曲线,曲线的相关系数应≥0.995。否则,应查找原因,重新绘制工作曲线。

连续分析时,每 24 h 分析一次工作曲线中间浓度点,其测定结果与已知浓度的相对误差应在±20%之内。否则,须重新建立工作曲线。

10.3 精密度和准确度

- 10.3.1 每20个样品或每批次样品(<20个/批)应分析1个平行样,平行样测定结果相对偏差应≤20%。
- 10.3.2 每20个样品或每批次样品(<20个/批)应分析1个基体加标样,基体加标回收率应控制在70%~130%范围之间。

11 废物处理

实验过程中产生的废物应分类收集,集中保存,委托有资质的单位处置。

12 注意事项

- 12.1 在采样、样品保存和预处理过程中,应避免接触塑料和其他有机物。
- **12.2** 在测定含盐量较高的样品时,氯化钠(4.3)的加入量可适量减少,避免样品析出盐而引起顶空样品瓶中气液两相体积变化。样品与标准系列溶液加入的盐量应一致。

附录 A

(规范性附录)

目标化合物的检出限和测定下限

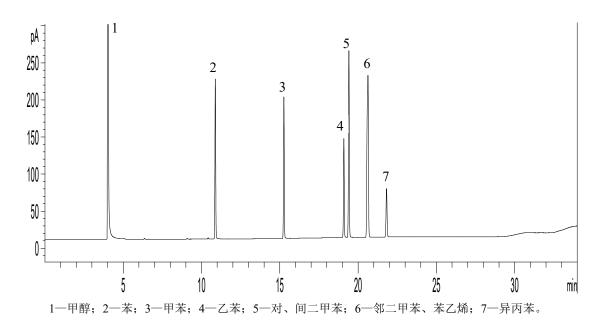

表 A.1 给出了当取样体积为 10.0 ml 时,方法的检出限和测定下限。

表 A. 1 目标化合物的检出限和测定下限

物质名称	检出限(μg/L)	测定下限(μg/L)
苯	2	8
甲苯	2	8
乙苯	2	8
对二甲苯	2	8
间二甲苯	2	8
异丙苯	3	12
邻二甲苯	2	8
苯乙烯	3	12

附录 B (资料性附录) 辅助定性参考色谱图

按照仪器参考条件(7.1),使用色谱柱 II(5.4) 分离苯系物的参考色谱图见图 B.1。

图B. 1 苯系物参考色谱图(色谱柱 II 辅助定性)($6000~\mu g/L$)

附录 C (资料性附录) 方法的精密度和准确度

表 C.1~表 C.4 分别给出方法的精密度和准确度。

表 C. 1 6 家实验室方法的精密度

	物质名称		苯	甲苯	乙苯	对二甲苯	间二甲苯	异丙苯	邻二甲苯	苯乙烯
	20 μg/L	测定的平均值 (μg/L)	20	19	19	19	20	19	20	19
		实验室内相对 标准偏差(%)	3.0~13	4.1~15	4.1~9.4	4.9~12	4.4~12	4.1~15	3.6~12	1.6~14
苯		实验室间相对 标准偏差(%)	8.2	9.8	11	11	12	11	9.5	8.2
系物		重复性限r (μg/L)	4	4	4	4	4	4	4	4
混合		再现性限R (μg/L)	6	7	7	7	8	7	6	6
标	100 μg/L	测定的平均值 (mg/L)	97	96	96	94	96	96	96	96
准样		实验室内相对 标准偏差(%)	2.1~6.1	3.0~6.0	2.9~8.9	4.5~7.7	2.6~7.2	4.4~9.5	3.1~6.4	3.8~6.3
品		实验室间相对 标准偏差(%)	3.9	3.8	4.4	5.3	4.2	5.6	3.1	2.7
		重复性限r (μg/L)	12	14	15	15	14	19	14	14
		再现性限R (μg/L)	16	16	18	19	17	23	15	14

表 C. 2 1 家实验室方法的精密度

物质名称		物质名称			乙苯	对二甲苯	间二甲苯	异丙苯	邻二甲苯	苯乙烯
苯	50 a/I	测定的平均值 (μg/L)	52	55	51	53	51	51	48	49
系物	50 μg/L	实验室内相对 标准偏差(%)	6.3	5.6	8.5	8.4	7.2	9.2	7.7	6.0
混合	2000 μg/L	测定的平均值 (μg/L)	2.02×10^{3}	2.04×10^{3}	1.91×10^{3}	2.07×10^{3}	2.07×10^{3}	2.08×10^{3}	2.06×10^{3}	2.05×10^{3}
标	2000 μg/L	实验室内相对 标准偏差(%)	2.9	4.8	7.0	7.4	7.2	7.8	6.0	4.7
准样	10000/I	测定的平均值 (μg/L)	9.95×10^{3}	9.96×10^{3}	9.99×10^{3}	10.0×10^{3}	9.99×10^{3}	9.99×10^{3}	9.99×10^{3}	10.0×10^{3}
品	10000 μg/L	实验室内相对 标准偏差(%)	2.6	2.4	2.1	2.1	2.1	1.9	2.1	2.5

表 C. 3 6 家实验室方法的准确度

样品类型	化合物	样品浓度 (μg/L)	加标浓度 (μg/L)	加标回收率 范围(%)	加标回收率最终值 $P \pm 2 S_{\bar{P}}$ (%)
	苯	0	100	85.9~119	105 ± 24.2
	4	0	100	63.9 119	103 = 24.2
	甲苯	0	100	92.5~120	105 ± 20.4
	乙苯	0	100	94.2~120	105±19.6
地表水	对二甲苯	0	100	95.7~121	105±19.8
地衣小	间二甲苯	0	100	90.8~122	104±21.4
	异丙苯	0	100	88.4~122	103±26.8
	邻二甲苯	0	100	94.2~111	102±13.0
	苯乙烯	0	100	100~113	106±11.0

表 C. 4 1 家实验室方法的准确度

样品类型	化合物	样品浓度 (μg/L)	加标浓度 (μg/L)	加标回收率 范围(%)	加标回收率最终值 $P \pm 2 S_F$ (%)
	苯	0	500	84.4~91.6	88.4±6.0
	甲苯	0	500	81.6~89.4	86.6±5.4
	乙苯	0	500	79.6~88.8	85.5±6.7
14 T -lv	对二甲苯	0	500	79.4~88.8	85.4±7.0
地下水	间二甲苯	0	500	79.6~88.4	85.3±6.6
	异丙苯	0	500	78.4~88.6	84.6±7.8
	邻二甲苯	0	500	80.8~89.2	86.1±6.1
	苯乙烯	0	500	82.2~89.8	86.8±5.6
	苯	0	1000	80.2~84.3	82.2±2.8
	甲苯	0	1000	78.3~85.4	81.1±5.0
	乙苯	0	1000	77.0~86.2	80.3±6.9
生活污水	对二甲苯	0	1000	77.6~87.2	81.0±7.2
生拍拐爪	间二甲苯	0	1000	77.6~87.1	81.0±7.2
	异丙苯	0	1000	76.1~86.6	80.1±7.8
	邻二甲苯	0	1000	80.6~89.0	83.5±6.4
	苯乙烯	0	1000	85.2~92.6	87.6±5.7

续表

样品类型	化合物	样品浓度 (μg/L)	加标浓度 (µg/L)	加标回收率 范围(%)	加标回收率最终值 $P \pm 2 S_{\bar{P}}$ (%)
	苯	0	6000	91.4~103	96.7±8.8
	甲苯	0	6000	90.3~102	95.1±8.6
	乙苯	9.5	6000	88.2~98.2	91.6±7.8
工业废水	对二甲苯	5.3	6000	88.0~97.8	91.3±7.6
工业 版小	间二甲苯	11.6	6000	88.0~98.4	91.4±7.9
	异丙苯	0	6000	84.5~92.5	87.0±5.8
	邻二甲苯	19.4	6000	90.0~98.4	92.5±6.6
	苯乙烯	19.4	6000	92.4~101	95.0±6.4